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The ground-based spacecraft simulator is a useful tool to develop and verify new con-
trol laws required by modern spacecraft applications. In order to simulate the space en-
vironment with the ground-based spacecraft simulator, the effects of gravity should be
minimized. In this paper, a three-axis rotational rigid spacecraft simulator on a spherical
air-bearing system is considered. The method of estimating the inertial properties of a
spacecraft as well as the location of the center of mass is presented with the batch least-
square estimation. The identified center of mass location is used to actuate the automatic
mass balancing system to compensate for the center of mass offset. Adaptive control of the
automatic mass balancing system is also presented when the balancing masses are actuated
in real-time to eliminate the center of mass offset from the center of rotation. The proposed
technique is implemented on the Three Axis Simulator 2 (TAS2) which is a ground-based
experimental testbed for the Bifocal Relay Mirror Spacecraft (BRMS).

I. Introduction

Ground simulation and testing of spacecraft attitude dynamics is highly desirable because it is extremely
difficult to test and reconfigure the system once the vehicle is in the space. Rigorous ground testing of the
spacecraft attitude control system will significantly reduce the risk to the project. Ground-based spacecraft
testbeds often utilize air-bearings to simulate frictionless and micro-gravity space environments. Various air-
bearing-based spacecraft simulators have been developed in the past, and the historical review is presented
in.1 As in reference,1 there are two types of air-bearing systems. One is the planar air-bearing system which
is capable of providing one rotational and two translational degrees of freedom. The planar motion air-
bearing testbeds are often used for simulations of formation flying, rendezvous and docking. The other type
is the spherical air-bearing system for three-dimensional rotational motion. Spherical air-bearing systems are
widely used for spacecraft attitude dynamics research. However, there are various disturbance elements with
the spherical air-bearing testbeds, which limit the simulation of the space environment during spacecraft
attitude dynamics experiment.1 Among the disturbances, gravity torque effects are the most significant and
the most observed behavior.

A spherical air-bearing-based spacecraft testbed requires the center of mass location of the spacecraft
be accurately aligned with the center of rotation of the spacecraft. Manual balancing of the testbed is a
time consuming process with limited accuracy. When the center of mass is located below the center of
rotation, the testbed behaves like a pendulum. Since the pendulum system has a stable equilibrium point
when the center of mass is located along the gravity vector, the balance of the system cannot be guaranteed
just by observing the testbed maintaining one fixed attitude. In order to overcome the difficulty of manual
balancing, an automatic mass balancing system has been employed in the recent testbed.3 In reference,3

the automatic mass balancing system is composed of three masses on linear stages, which can alter their
positions relative to the spacecraft body. The set of equilibrium points are recorded for different locations
of these balancing masses. Since these equilibrium points indicate the center of mass is located along the
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gravity vector, the center of mass can be estimated using these equilibrium points. In order to achieve better
accuracy in estimating the location of the center of mass, it is desirable to record a lot of equilibrium points.
Therefore, this method may require a lot of time.

In this paper, batch linear least-square estimation of the spacecraft inertia and the center of mass is
considered first. The estimated center of mass is directly used for the compensation of the center of mass
offset from the center of rotation. An adaptive control method for automatic mass balancing system is also
developed for on-line compensation of the center of mass offset. The proposed techniques are implemented
on the Three Axis Simulator 2 (TAS2) which is a spherical air-bearing-based testbed for the Bifocal Relay
Mirror Spacecraft (BRMS) developed at the Naval Postgraduate School.

II. Batch Estimation of Moment of Inertia and Center of Mass

In this development, a rigid body three-axis spacecraft simulator with momentum exchange devices is
considered. A simple equation describing the dynamics of the spacecraft simulator in the spacecraft body-
fixed coordinates is written as

Jω̇ + ω × Jω = −ḣ − ω × h + r × mg (1)

where, J is the total moment of inertia including the momentum exchange devices, ω is the angular rate
of the spacecraft, h is the total momentum of the momentum exchange devices, m is the total mass, r is a
constant vector from the center of rotation to the center of mass (center of mass vector in spacecraft body
frame), and g is the gravity acceleration vector. The unknowns to be estimated in Equation 1 are the inertia
matrix J and the center of mass vector r. Defining matrix Ω and vector of inertia matrix elements J̃ as

Ω =







ω1 0 0 ω2 ω3 0

0 ω2 0 ω1 0 ω3

0 0 ω3 0 ω1 ω2






, J̃ =

[

Jxx Jyy Jzz Jxy Jxz Jyz

]T

, (2)

Equation 1 can be rewritten as

Ω̇J̃ + ω × ΩJ̃ = −ḣ − ω × h − [g×]mr (3)

where the cross product matrix is defined by the following relationship.

[a×] =







0 −a3 a2

a3 0 −a1

−a2 a1 0






, a =







a1

a2

a3






(4)

Equation 3 may be written in matrix form, which is also done in ref.3

[

Ω̇ + ω × Ω [g×]
]

[

J̃

mr

]

= −ḣ − ω × h (5)

Equation 5 requires the knowledge of ω̇ which requires numerical differentiation of the gyro signals. Therefore
direct application of least-square method is not desirable. One method to eliminate the numerical derivative
of the rate is to utilize the energy balance presented in5 and.6 Since the energy of the system is conserved,
kinetic energy of the spacecraft is equal to the energy caused by the control input and gravity. In this paper,
low-pass filtering is proposed. Both sides of Equation 1 are filtered through a low pass filter such that

Jω −
a

s + a
(Jω) +

1

s + a
(ω × Jω) +

1

s + a
(g × mr) = −h +

a

s + a
(h) −

1

s + a
(ω × h) (6)

where a determines the crossover frequency. Time and frequency domain is mix-used in Equation 6 for the
convenience of the analytical derivation. From the definition of Ω and J̃, Equation 6 can be rewritten as

[

Ω −
a

s + a
(Ω) +

1

s + a
([ω×]Ω)

1

s + a
([g×])

]

[

J̃

mr

]

= −h +
a

s + a
(h) −

1

s + a
(ω × h) (7)
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Now the equation is written as a standard form of the least-square problem such that Φx = y. There is a
special case when a = 0, which means that the filter is a simple integrator. In this case, the least square
problem reduces to

[

Ω +

∫ t

t0

([ω×]Ω)dt

∫ t

t0

[g×]dt

]

[

J̃

mr

]

= −h −

∫ t

t0

(ω × h)dt (8)

III. Automatic Mass Balancing System and Direct Compensation of Center of

Mass

Figure 1. Automatic Mass Balancing System (AMBS)

An automatic Mass Balancing System (AMBS) is typically composed of three moving balance masses
on linear stages as shown in Figure 1. The three balancing masses move along the unit vector directions
represented as u1, u2, and u3. In Figure 1, these unit vectors are located parallel to the three axis of the
spacecraft body. However, this is not a requirement for the mass balancing system. Vectors ρ1, ρ2, and ρ3

represent the zero-locations of the balancing masses. The balancing mass displacements d1, d2, and d3 are
referenced from these zero-locations. Then, the location vector of each balancing mass can be represented
as Ri = ρi + diui for i = 1 · · · 3. The center of mass vector r is computed as

r =
1

m

∫

B

Rdm =
1

m

[

(m − mB)R0 +
3

∑

i=1

miRi

]

(9)

where, m is the total mass of a spacecraft including balancing masses, and mB = m1 + m2 + m3 represents
the sum of balancing masses, and R0 is the center of mass vector when the balancing masses are removed.
When the balancing masses are moved by ∆di (i = 1 · · · 3), the new location of the center of mass becomes

r′ =
1

m

[

(m − mB)R0 +
3

∑

i=1

mi(ρi + (di + ∆di)ui)

]

(10)
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The change in the center of mass vector becomes

∆r = r′ − r =
1

m

3
∑

i=1

mi∆diui (11)

In order to compensate the center of mass offset, ∆r should be equal to −r̂, where r̂ is the estimated center
of mass vector from the batch least-square estimation. Substituting ∆r = −r̂ and solving for ∆di yields







∆d1

∆d2

∆d3






= −m

[

m1u1 m2u2 m3u3

]

−1

r̂ (12)

The inertia of the spacecraft is also changed as a result of the center of mass offset correction. The estimated
inertia matrix can be broken into two parts as

Ĵ = Ĵs +

3
∑

i=1

(−mi[Ri×][Ri×]) (13)

where, Ĵs stands for the estimated inertia matrix without balancing masses. The new inertia matrix after
center of mass offset compensation becomes

Ĵ ′ = Ĵ −

3
∑

i=1

(−mi[Ri×][Ri×]) +
3

∑

i=1

(−mi[R
′

i×][R′

i×]) (14)

where
R′

i = (ρi + (di + ∆di)ui) (15)

IV. Adaptive Control of Automatic Mass Balancing System

In this section, an adaptive control method is proposed for the automatic mass balancing system. This
method requires the initial estimation of the spacecraft inertia matrix with the methods presented in the
previous section. However, the center of mass vector estimation is not required. The equation of the motion
of the spacecraft simulator is

Ḣ + [ω×]H = m(r × g) (16)

The time-varying center of mass vector r(t) can be written as

r(t) = r0 + δr(t) (17)

where r0 represents the center of mass location vector at time zero and δr is the change of the center of
mass due to the automatic mass balancing actuation. The problem is to drive the automatic mass balancing
system such that the unknown r0 is compensated. When the simulator is perfectly balanced, δr becomes
−r0 such that r = r0 + δr = 0. The total momentum in Equation 16 is written as

H = Jω +

3
∑

i=1

Ri × miṘi + h (18)

where h is the momentum of the momentum exchange device. Note that the spacecraft inertia matrix (J)
is time-varying and is determined by the balance-mass positions. The inertia of the spacecraft without
balancing masses can be written as

Js = J(0) −

3
∑

i=1

(−mi[Ri(0)×][Ri(0)×]) (19)

Then the inertia matrix at time t can be computed as

J(t) = Js +
3

∑

i=1

(−mi[Ri(t)×][Ri(t)×]) (20)
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The spacecraft equation of motion in Equation 16 can be further written as

Ḣs + [ω×]Hs = τ − m[g×](r0 + δr) (21)

where,

Hs = Jω +

3
∑

i=1

Ri × miṘi, τ = −ḣ − [ω×]h (22)

Proposing the feedback control law as τ = (−K + [ω×])Hs with symmetric positive definite matrix K, the
closed-loop equation of motion becomes

Ḣs + KHs = −m[g×](r0 − δr) (23)

where δr is to be determined by the adaptation rule. Define the candidate Lyapunov function as

V (Hs, δr) =
1

2
HT

s Hs +
1

2
(r0 + δr)T(r0 + δr) (24)

The time derivative of the candidate Lyapunov function becomes

V̇ = HT
s Ḣs + (r0 + δr)T δ̇r = HT

s (−KHs − m[g×](r + δr)) + (r0 + δr)T δ̇r (25)

The adaptation rule is chosen as
δ̇r = m[g×]T Hs (26)

The adaptation rule can be further written as a function of the positions of the mass balancers for imple-
mentation purpose. It can be shown that

δr =
1

m

3
∑

i=1

miδdiui =
1

m
Gδd (27)

where δd = [δd1 δd2 δd3]
T and G = [m1u1 m2u2 m3u3]. The time derivative of the equation yields

δ̇r =
1

m
G ˙δd (28)

Then the adaptation rule becomes
˙δd = m2G−1[g×]T Hs (29)

The time derivative of the candidate Lyapunov function with the proposed adaptation rule becomes

V̇ = −HT
s KHs (30)

which is a negative semi-definite. Since δr and τ are bounded, Ḣs is also bounded. By inspecting

V̈ = −2HT
s KḢs (31)

V̈ is also bounded. Therefore, the momentum Hs is concluded to be stable and goes to zero as time goes
to infinity. Since the momentum Hs goes to zero, the control input τ and mass balancing actuation δṙ also
becomes zero. This indicates that the total angular momentum (H = Jω +

∑

3

i=1
Ri × miṘi + h) becomes

constant. Although the total angular momentum is conserved with the proposed control method, it does not
guarantee the correct estimation of r0. Since the rank of skew symmetric matrix [g×] is always two, there
exists a null vector solution which makes [g×]m(r0 + δr) to be zero. From the following equation, any real
k will not affect the motion of the spacecraft simulator since [g×]kg = 0.

Ḣs + [ω×]Hs = τ − m[g×](r0 + δr + kg) (32)

This corresponds to the situation where the center of mass is located along the gravity vector as shown in
Figure 2. The system may be in the equilibrium state with the incorrect compensation of the center of mass
offset as mentioned in the introduction section. Therefore, the system requires persistent excitation. The
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Figure 2. Null Vector Solution Example

simplest solution is to generate a desired spacecraft momentum trajectory which can provide persistent ma-
neuvering of the spacecraft simulator. Define the desired spacecraft momentum trajectory as Hd. Proposing
the candidate Lyapunov function as

V (Hs, δr) =
1

2
(Hs − Hd)

T (Hs − Hd) +
1

2
(r0 + δr)T (r0 + δr) (33)

Time-derivative of the candidate Lyapunov function becomes

V̇ = (Hs − Hd)
T (Ḣs − Ḣd) + (r0 + δr)δ̇r (34)

Proposing the feedback control law as

τ = −K(Hs − Hd) + [ω×]Hs + Ḣd (35)

Then the time-derivative of the candidate Lyapunov function becomes

V̇ = (Hs − Hd)
T (−K(Hs − Hd) − [g×]m(r0 − δr) + (r0 + δr)δ̇r (36)

Let the adaptation law to be

δ̇r = m[g×]T (Hs − Hd), equivalently ˙δd = m2G−1[g×]T (Hs − Hd) (37)

Then, the equation becomes
V̇ = −(Hs − Hd)

T K(Hs − Hd) (38)

It can be also shown that the tracking error becomes zero as time goes to infinity. In order to verify the
proposed control law, computer simulation has been performed.

The top two plots in Figure 3 show the adaptive mass balancing control simulation results without
persistent excitation of the testbed. The angular momentum of the spacecraft (shown in top left plot)
becomes zero as the center of mass offset is compensated using the adaptation law. However, the converged
center of mass offset (shown in top right plot) did not show the correct results. The resulting center of mass
becomes the null space solution of the matrix [g×]. With persistent excitation (shown in bottom plots),
the tracking error becomes zero and the center of mass offset becomes also zero. Therefore, the simulation
result verified the importance of the persistent excitation during the adaptive control of the automatic mass
balancing system.
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Figure 3. Adaptive Mass Balancing Control Simulation Results

V. Experiment with the Bifocal Relay Mirror Spacecraft Simulator

Bifocal Relay Mirror Spacecraft (BRMS), whose concept is shown in Figure 4, is composed of two optically
coupled telescopes used to redirect laser light from ground-based, aircraft-based or spacecraft based lasers
to distant points on the earth or in Space. The receiver telescope captures the incoming laser beam and the
transmit telescope directs the beam to the desired target point. The BRMS consists of single axis gimballed
receive and transmit telescopes with 1.64 meter diameter primary mirrors and fast steering mirrors for fine
beam control. The transmit telescope is attached to a majority of the spacecraft bus subsystems including the
attitude control sensors and actuators. Figure 5 is a Three-Axis Simulator 2 (TAS2) developed at the Naval

Figure 4. Bifocal Relay Mirror Spacecraft Concept

Postgraduate School for simulations of the BRMS. Currently, three Control Moment Gyroscopes (CMGs)
are served as a primary actuator of the spacecraft simulator. The change in the direction of the momentum
built by the CMG flywheel has the amplification effect of the torque generated. Therefore, high torque can
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Figure 5. NPS Three-Axis Simulator 2 (TAS2)

be generated efficiently with the CMGs. For the BRMS, CMGs are preferable actuation devices due to
the high speed slew capability requirement. The geometric configuration of the CMG array determines the
characteristics of the momentum space for the spacecraft control. The CMG array has a inherent problem as
CMG singularity. When the CMG gimbal angles are in the singularity state, the CMG array cannot produce
a commanded torque. For the experimental verification of the automatic mass balancing methods, it is
desirable to avid these singularity conditions. The CMG array configuration of TAS2 is shown in Figure 6.
Considering the current configuration of TAS2 shown in Figure 6 with constant speed CMG operation (200

Figure 6. CMG Array Configuration of TAS2
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rad/sec), the total momentum from this CMG array geometry is written as

h =







− cos β sin δ1

cos δ1

sin β sin δ1






+







− cos δ2

cos β sin δ2

sin β sin δ2






+







cos β sin δ3

− cos δ3

sinβ sin δ3






(39)

where β is the skew angle in Figure 6, δi is the gimbal angle of the ith CMG (i = 1,2,3), and angular
momentum from single CMG is normalized to 1 CMG worth of momentum. Then the torque from the CMG
array becomes the time derivative of the total CMG momentum, ḣ, which can be written as a matrix form
such that

ḣ = Aδ̇ (40)

where,

A =







− cos β cos δ1 sin δ2 cos β cos δ3

− sin δ1 − cos β cos δ2 sin δ3

sinβ cos δ1 sin β cos δ2 sin β cos δ3






(41)

The CMG steering law is a simple inversion of the matrix A such that

δ̇ = A−1ḣ (42)

When the matrix A becomes singular, the steering law will not work. One way to deal with the CMG
singularity without redundant CMGs is to use various singularity robust inverse methods. However, these
techniques introduce small error in there commanded torque to move away from these singularity points.
The introduction of this error may not degrade the performance for large slew angle maneuvers, where
transition maneuver is of no concern. However, for automatic mass balancing system, it is more desirable to
avoid these singularities without introducing error in the torque generated from the CMG array. Therefore,
the CMG array should be configured to have the largest singularity free momentum envelop. Since the
skew angle of each CMG can be changed with TAS2, various skew angles has been inspected. The optimal
skew angle which provide maximum available singularity free momentum volume for CMG is found to be 90
degrees. Figure 7 shows the singularity surface of the 3 CMG array with a 90 degree skew angle. When the
magnitude of the momentum of the each CMG is HCMG, this CMG array configuration provides singularity
free momentum sphere with the radius of HCMG. Attention is made such that the total momentum from
the CMG array stays in this singularity free momentum sphere during the experiment.

TAS2 employs three linear stages with balancing masses on them. The three linear stages are aligned
parallel to the three axis of the spacecraft body. Each linear stage has a maximum travel distance of 15 cm
(±7.5 cm) with an accuracy of 18µm and bidirectional repeatability of ±5µm. The maximum angular motion
of the testbed with the spherical air-bearing in roll and pitch is 45 degrees. However, in order to protect from
the instrumental and structural damages, a bumper with a structural damper is installed on the bottom of
the spacecraft hub. Therefore, roll and pitch motion of the bus is limited to around 20 degrees. TAS2 is
also equipped with Inertial Measurement Unit (IMU), two inclinometers (roll, pitch), on-board computer,
IR sensor, and magnetometers for navigation. The IMU consists of 3 Fiber Optics Rate Gyroscopes with
integrated 3 translational accelerometers.

The first experiment was carried out to determine the moment of inertia of the system and the center of
the mass location. A sinusoidal reference trajectory has been generated and quaternion feedback control has
been implemented for reference trajectory tracking. The testbed was reasonably well balanced manually to
minimize momentum build-up and eventual saturation of the singularity free momentum space. With the
recorded gimbal angles and spacecraft attitude data, the batch estimation of the system inertia matrix and
center of mass vector is performed with the filtering method developed previously. The simple integration

filter (
1

s
) is utilized for the linear least-square method. From the batch estimation, the resulting system

inertia and center of mass vector become

J =







61.7985 −2.4520 −15.2826

−2.4520 56.2741 −9.1634

−15.2826 −9.1634 215.1353






, mr =







−0.0058

0.0302

0.4008






(43)
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Figure 7. Singularity Surface of 90 degree skew with 3 CMG array

Although the direct compensation of the estimated center of mass showed improved balancing results, it still
exhibited imbalance in some degree. As next step, the automatic mass balancing experiment with adaptive
control method is carried out with the estimated inertia of the testbed. Figure 8 shows the actual attitude
of the spacecraft during the adaptive mass balancing experiment. Sinusoidal attitude trajectory on roll and
pitch of the spacecraft has been generated and the corresponding momentum trajectory has been used as a
reference momentum trajectory of the adaptive mass balancing.

Figure 9 shows the experimental results showing the tracking error and balancing mass positions. Initially,
the center of mass z-position was located lower than the center of rotation, while the x − y position of the
testbed was reasonably balanced manually. This is due to the fact that the x − y direction of the center of
mass offset can be easily checked by inspecting the roll and pitch angle at the equilibrium point. The left
plot of Figure 9 shows that the tracking error is converging to zero. The actual positions of the balancing
masses are also shown in the right plot. As anticipated, the balancing mass along the z direction has been
lowered to correct the pendulum-like behavior, while the x−y balancing masses has a smaller correction due
to their better initial balancing. The testbed showed much improved performance compared to the direct
compensation of the center of mass offset from batch estimation. The final balance was not perfect however,
due to various reasons. First, the attitude measurements are not perfect. Friction and backlash in the
CMG gimbal restrict the ability to command the desired net momentum state. Although the CMG flywheel
assembly is reasonably balanced with respect to the gimbal axis, there still exists a center of mass offset
for an individual CMG, which alters the center of mass of the whole testbed during the tracking control.
However, the adaptive mass balancing control provides much improved balancing in reduced time compared
to the manual adjustments.

VI. Conclusion and Future Research

In this paper, a method of identifying the inertia property of a rigid body spacecraft as well as the center
of mass location was investigated. The adaptive method for automatic mass balancing is also proposed for
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Figure 8. Attitude of the spacecraft during mass balancing

Figure 9. Automatic Mass Balancing Results from Experiments

online actuation of the balancing masses. For the verification of the proposed method, an experiment was
also performed with the 3-axis rotational spacecraft testbed (TAS2). It is shown that the proposed adaptive
actuation of the balancing masses can compensate the center of mass offset. The accuracy of the center of
mass offset compensation can be improved with the proposed method with more accurate control of CMG
gimbal and more accurate angular rate measurements.
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